Diet-induced ketosis increases capillary density without altered blood flow in rat brain.

نویسندگان

  • Michelle A Puchowicz
  • Kui Xu
  • Xiaoyan Sun
  • Andre Ivy
  • Doug Emancipator
  • Joseph C LaManna
چکیده

It is recognized that ketone bodies, such as R-beta-hydroxybutyrate (beta-HB) and acetoacetate, are energy sources for the brain. As with glucose metabolism, monocarboxylate uptake by the brain is dependent on the function and regulation of its own transporter system. We concurrently investigated ketone body influx, blood flow, and regulation of monocarboxylate transporter (MCT-1) and glucose transporter (GLUT-1) in diet-induced ketotic (KG) rat brain. Regional blood-to-brain beta-HB influx (micromol.g(-1).min(-1)) increased 40-fold with ketosis (4.8 +/- 1.8 plasmabeta-HB; mM) in all regions compared with the nonketotic groups (standard and no-fat diets); there were no changes in regional blood flow. Immunohistochemical staining revealed that GLUT-1 density (number/mm2) in the cortex was significantly elevated (40%) in the ketotic group compared with the standard and no-fat diet groups. MCT-1 was also markedly (3-fold) upregulated in the ketotic group compared with the standard diet group. In the standard diet group, 40% of the brain capillaries stained positive for MCT-1; this amount doubled with the ketotic diet. Western blot analysis of isolated microvessels from ketotic rat brain showed an eightfold increase in GLUT-1 and a threefold increase in MCT-1 compared with the standard diet group. These data suggest that diet-induced ketosis results in increased vascular density at the blood-brain barrier without changes in blood flow. The increase in extraction fraction and capillary density with increased plasma ketone bodies indicates a significant flux of substrates available for brain energy metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotection in diet-induced ketotic rat brain after focal ischemia.

Neuroprotective properties of ketosis may be related to the upregulation of hypoxia inducible factor (HIF)-1alpha, a primary constituent associated with hypoxic angiogenesis and a regulator of neuroprotective responses. The rationale that the utilization of ketones by the brain results in elevation of intracellular succinate, a known inhibitor of prolyl hydroxylase (the enzyme responsible for t...

متن کامل

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

Topography of capillary density, glucose metabolism, and microvascular function within the rat inferior colliculus.

A midbrain nucleus of the auditory system, the inferior colliculus, was used as a model for analyzing spatial correlations or "coupling" among capillary density, tissue glucose metabolism, and several measures of microvascular function in the rat. The capillary bed of the inferior colliculus was examined with stereological techniques, and physiological measures were obtained with radioactive tr...

متن کامل

The role of histamine receptors in restraint stress-induced immunosuppression in the rat brain

Restraint-induced stress (RS) increases histamine concentration in the brain. There is no previous report regarding the role of histamine receptors in immunomodulatory effect of RS. In the present study the role of brain histamine receptors on reduction of humoral and cellular immune function induced by RS was evaluated. For this purpose male Wistar rats (200-250 g) were immunized with sheep re...

متن کامل

The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism

Normal brain function depends critically on moment-to-moment regulation of oxygen supply by the bloodstream to meet changing metabolic needs. Neurovascular coupling, a range of mechanisms that converge on arterioles to adjust local cerebral blood flow (CBF), represents our current framework for understanding this regulation. We modeled the combined effects of CBF and capillary transit time hete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 292 6  شماره 

صفحات  -

تاریخ انتشار 2007